

What are the densities of feral honey bee colonies in natural and agricultural areas across Australia?

- Is pollination satisfactory?
- Biosecurity response
- Conservation concerns
- Access to forests

Recommended stocking rates for most crops

2-8 hives / ha

- FREE J. B. (1970). *Insect pollination of crops*. Academic Press
- MCGREGOR S. E. (1976). *Insect* pollination of cultivated crop plants. USDA Washington.
- DELAPLANE, K.S AND MAYER, D.E. (2000). Crop pollination by bees. CABI Publishing

Surveys show that the density of feral bee colonies in Australia is 10-100 times lower than the recommended stocking rate.

- Wyperfeld National Park Victoria: 0.5-1.5 colonies per ha
- Grenfell NSW 0.005 colonies per ha
- Stratford NSW 0.0025 colonies/ha

OLDROYD B. P., THEXTON, E. G., LAWLER, S. H. & CROZIER, R. H. (1997). Population demography of Australian feral bees (*Apis mellifera*). *Oecologia* **111**, 381-387. HINSON E. M., DUNCAN, M., LIM, J., ARUNDEL, J. & OLDROYD, B. P. (2015). The density of feral honey bee (*Apis mellifera*) colonies in South East Australia is greater in undisturbed than in disturbed habitats. *Apidologie* **46**, 403-413.

Manual surveys are too slow

OLDROYD B. P., SMOLENSKI, A., LAWLER, S., ESTOUP, A. & CROZIER, R. (1995). Colony aggregations in Apis mellifera. Apidologie 26, 119-130.

Queen in unknown colony		Son	s O			
<u>22 28</u>		<u>22</u>	<u>28</u>	<u>28</u>	<u>28</u>	A State of the second s
<u>36 36</u>		<u>36</u>	<u>36</u>	<u>36</u>	<u>36</u>	
<u>13 17</u>		<u>13</u>	<u>17</u>	<u>13</u>	<u>17</u>	
<u>16 12</u>		<u>16</u>	<u>12</u>	<u>12</u>	<u>16</u>	COLOR AND
<u>8</u> 5		<u>8</u>	<u>5</u>	<u>8</u>	<u>5</u>	
<u>96 89</u>		<u>89</u>	<u>96</u>	<u>89</u>	<u>89</u>	
N c	Maximum of 2 carry one of t	2 allele: hese al	s per lo Ieles	cus per r	nother.	All her sons

Disturbed and undisturbed sites

Grenfell agricultural area and Wedden Mountains National Park

Site	Disturbed/natural	Drones sampled	Estimated colonies/km ²
Gloster Tops	Undisturbed	79	10.4
Stratford Park	Disturbed	123	5.6
Allyn River	Undisturbed	72	15.4
Monkerai	Disturbed	70	13.8
Ben Hall's cave camp	Undisturbed	62	12.2
Grenfell	Disturbed	70	12.9
Holly camp	Undisturbed	278	18.9
Tyagong	Disturbed	74	10.6
Black flat	Undisturbed	222	27.7
Lake Albacutya	Disturbed	29	6.2
Lake Brambrook	Undisturbed	241	21.0
Yaapeet	Disturbed	13	4.4

Hinson, E.M., et al. 2015. The density of feral honey bee (*Apis mellifera*) colonies in South East Australia is greater in undisturbed than in disturbed habitats. *Apidologie* 46: 403-413.

Site	Colonies / km ² 2 range	2 km flight Colonies km ² ager models	nt based
Wyperfeld	6.4	0.9	
Yaapeet	5.6	0.7	
Dookie	3.1	0.4	
Pukapunyal	2.7	0.3	
Eildon	3.3	0.6	
Marysville	2.9	0.4	
his is 10-100 t	imes less than re	ecommended (50 col	onies /

Site	Colonies / km ² 2 km flight range	Colonies km ² agent based models
Wyperfeld	6.4	0.9
Yaapeet	5.6	0.7
Dookie	3.1	0.4
Pukapunyal	2.7	0.3
Eildon	3.3	0.6
Marysville	2.9	0.4

Arundel, J., B.P. Oldroyd, S. Winter. 2012. Modelling honey bee queen mating as a measure of feral colony density. *Ecol Mod* 247: 48-57. Arundel, J., et al. 2014. Remarkable uniformity in the densities of feral honey bee *Apis mellifera* Linnaeus, 1758 (Hymenoptera: Apidae) colonies in South Eastern Australia. *Aust Ent* 53: 328-336.

<section-header><section-header>

How far do drones fly?

 Need to exactly know how far males fly

Transect experiment summaries

First transect

Average Radius = 1.82 kmAverage flight range = 3.64 kmAverage area sampled = 10.41 km^2 n = 2288 drones sampled and genotyped $N_c = 236 \text{ colonies}$ Colony density^{*} = $25.11 \text{ colonies/km}^2$ Second transect

Average Radius = 1.63 km Average flight range = 3.26 km Average area sampled = 8.34 km² n = 2055 drones sampled and genotyped N_c = 263 colonies Colony density^{*} = 27.98 colonies/km²

* Based on an average area sample from both experiment (9.4 km²)

Conclusions

- Density of colonies in Wagga is 4.04 colonies per km²
- A single balloon attracts drones from a 7.8 km² radius
- Average flight range: 3.16 km
- Maximum flight range: 7 km
- Probably better to sample from two spots 500 m apart.

A potential problem – worker-laid males

Queen-laid drone brood (big cells)

Worker-laid drone brood (little cells)

We reject small bees

• Any male with a wing width less than 5.5 mm will be discarded.

We are interested in how colony density and identity change across time.

• Sampling two ovals in Sydney once a month throughout the project.

e in the lab to yping. 3y PhD students robots!

Securing Pollination

This project is supported by funding from the Australian Government Department of Agriculture and Water Resources as part of its Rural R&D for Profit program.

Thanks to: Bob McDonald, Jonathan Arundel, Eloise Hinson, Gabi Buchmann, Michael Duncan

AgriFutures is a trade mark owned by Rural Industries Research & Development Corporation.

Building 007 Tooma Way Charles Sturt University Locked Bag 588 Wagga Wagga NSW 2650

02 6923 6900 info@agrifutures.com.au agrifutures.com.au

